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Modellization of self-propelling particles with a coupled 
map lattice model 
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PMMH, ESPCI, 10 me Vauquelin, 75231 Paris Cedex 05, France 

Received 21 Febmary 1995 

Abstract. We make a simple coupled map lmice model for simulating self-propelling particles. 
The interaction consists of three pans: viscous 'smearing' where the momenta are averaged 
over some neighbourhood, the collision where the momenta are conserved and, finally, the 
acceleration. As in externally forced fluids we find three regions: diffision,~canvection and 
intermittency. 

1. Motivation 

There are examples in nature. where the participating organisms form spatial, patterns 
considerably larger than the particles themselves [I]. Examples include birds flying in 
formation, schools of fish, and swimming micro-organisms. Here we consider such systems 
as special cases of granular media~on an air table, where energy is dissipated in collisions. 
The energy input in granular media is often the result of a static field like gravitation, or 
by a less ordered input through shaking or stirring. Here, the acceleration of each particle 
is, for simplicity, taken to be in the direction of its velocity. Attempts to understand such 
systems include molecular dynamic models by Vicsek et a1 [2]  and Duparcmeur [3], who 
also found vortex formation. 

Instead of working with distinct particles, here we suggest a model similar to several 
lattice gas models where the particles-ar, here, organisms-are represented by densities or 
probabilities on a triangular lattice. This has the advantage of allowing fast simulations of 
large systems resulting in good statistics. There are, of course, drawbacks. The velocities 
are discrete and along fixed directions; this makes it difficult to continuously change a 
movement in a direction between two lattice directions. The suggested model takes only 
particle-particle interactions into account, in contrast to, for instance, Childress' models 
(see [ 11 and references therein) where the particles interact through the medium. As we 
will see, however, it is not necessary to consider movements of the medium in order to 
obtain ordered behaviour. 

2. The model 

The model that we have used in the numerical simulations has three parameters; viscosity 
q, acceleration y ,  and dispersion 1 - U. We take a phenomenological approach without 

t Permanent address: IFM, Link6ping Univenicy, S-58183 Link6ping. Sweden. 
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Figure 1. A fraction 
six neighbours. This is done for all sites and repeated in all six directions. 

of the mass at the site in the centre of h e  picture is distributed to its 

considering a specific natural system. In the following, we will describe the model in 
detail. 

On a triangular lattice, each site has six nearest neighbours. On each site we store real 
numbers representing densities of mass travelling in each of the six lattice directions, and 
an extra variable for storing the rest mass. This is a technique often used for simulating 
lattice gases [4]. 

Let us now introduce some notation. On each site i ,  there are six densities Ni, j  where 
j E [1,6] represents the six lattice directions. The rest mass is written as Nj.0. At any 
instant the sum of these seven variables over all sites is, thus, a constant to ensure mass 
conservation. 

The update of the system contains four steps, namely viscous ‘smearing’, collision, 
acceleration and propagation. In the 
propagation step, the densities are just transferred in the corresponding direction, i.e. the 
density Nj, j  is moved to site i’s neighbour in direction j-let us call that site n a n d  stored 
as Nn. j .  This means that all mass that is not resting moves with the unit velocity one lattice 
spacing per time step. Both energy and linear momentum are conserved, except at the walls 
where the particles are reflected and the linear momentum is locally changed. After this 
translation, mass is exchanged to simulate viscosity. A fraction q of the mass Ni.1 will 
be distributed to the site i’s six neighbours, n E [l, 61, if Ni, j  is larger than N..j. Thus, 
‘smearing’ only moves mass from denser to less dense regions. 

Each of these steps are performed in parallel. 

For each of site i ’s  six neighbours denoted by n, we can write 

otherwise. 

N;,j over the directions j. We can write this as 
The next part of the updating is the collision. This is simply a vector addition of the 
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Here we have written N ; , j ~ a s  a vector, to make clear that it is a vector sum. The direction 
of this vector is, thus, the jth lattice direction. The resulting vector p; is nothing but the 
linear momentum at site i .  

In general, the momentum pi lies between two lattice directions 6: and 6; ,  and we 
decompose pi in these two directions. The N& and N[b are chosen so that N{'+N& = pi: 
Since the angle between.; and 6 is always n/3, it is  easy^ to do this in a unique way: 

N:# = r; sin(rr/3 - @)/ sin(Zn/3) 
NCb = r; sin e;/ sin(2n/3) 

where 6'; is the 'angle between pi and 6;. 
Since the velocity is discrete, the energy at each site is simply the scalar sum of the 

(moving) mass E; = E;=, N ~ J .  After the collision, there is only moving mass in directions 
2; and &. The mass that does not move is, thus, added to the rest mass and is, directly after 
the collision, the difference between the sum of the incoming masses and the two outgoing 
masses. Although the linear momentum has been conserved, this is not true for the energy. 
In this step, energy is,'thus, really dissipated. 

At the acceleration step of the update, a fraction y of the rest mass is accelerated. A 
fraction U is sent in the two main directions & and 6,. and the rest is evenly distributed in 
all six directions. 

As long as v is larger than zero (i.e. it is non-negative), the particles are mainly accelerating 
in the same directions as they are moving. We used a value of U x 0.01 in the simulations. 
The collision itself will also strongly align the particles. 

3. Boundary conditions and convection 

One can easily imagine what will happen when a system l i e  the one described above is 
simulated with periodic boundaries. After the system has been randomly initiated, the vector 
sum of N;.j over all sites i will give the total linear momentum of the whole system. This is 
a preferred direction, and the interactions described above will decrease movements in other 
directions. Movements along this preferred direction will be amplified by the acceleration 
step and, as a result, all particles will move in this one direction. Simulations of the model 
give this result, which is also the case of the model of Vicsek et a1 121. 

The boundaries that we use are reflecting, and are made by letting the resulting linear 
momentum pi change its direction at the wall sites so that the angle of the outgoing 
momentum is the same as the angle of the incoming momentum. In systems with the type 
of mechanical interaction described above, the presence of walls is crucial to the emergence 
of convection. Other forms of convection-like behaviour might have other origins. There 
are examples of termites running around in a-seemingly meaningless-+rcle for a whole 
day. Such a phenomenon, as we see it, originates from the cooperative character of the 
termites. Once the circle is closed, by chance each termite will follow its fellow runner 
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in front of him, and as long as they cannot see or figure out that they are all running'in a 
circle, they will continue to do so. 

4. Simulations 

The actual simulations were made on a Connection Machine CM-200. A random initial 
configuration can be made by assigning to each Ni.. a number between 0 and 1. This is 
how we choose the initial configuration if nothing else is stated. Thereafter, the updating 
rule described above is applied to all sites simultaneously. We use hexagonal boundaries 
so that no lattice direction is preferred with respect to the others. 

I 

Figure 2. Snapshot and rotation strength from convection on a 128 x 128 lanice. (a) A typical 
snapshot of the convecting system. 11 = 0.5, y = 0.28, v = 0.01. The snapshot is Wren 
after 3000 iterations. (b) Absolute value of the angular momenNm versus the parameter y .  
11 = 0.5. v = 0.01, For y between 0.15 and 0.33, stable convection is found. The behaviour is 
meta-stable. 

Figure 2(a) shows a typical snapshot of convection in the system after a few hundred 
iterations. The m w s  correspond to the resulting momenta pi.  In order to produce a 
somewhat clearer picture, not all vectors are displayed. A strong and stable convection can 
be seen. The main characteristic of the convection is the angular momentum L .  If the 
vector from the centre? of the system to site i is R;, and the linear momentum is pi at this 
site, the strength of the rotation is the angular momentum (proportional to the square root 
of the energy) 

L ? = ~ R , .  x p ; .  (11) 

Depending on the orientation, L can take both positive and negative values; it will always 
be parallel to the z-axis since both Ri and pi lie in the x-y plane. 

With this measure we can make a quantitative investigation to decide whether convection 
is present or not. The absolute value of the time average of L will then provide information 
on how strong the convection is. We made separate runs for different values of y ,  while 
keeping the other parameters constant. Figure 2(b) shows the convection strength versus 
y .  For very low values of y ,  the system seems to be rather diffusive. Then, for a higher 
energy input y:, the rotation s t m  and gets stronger for higher y up to a certain value yo 

t The centre of the system coincides with the centre of the convection cell by stable convection. 
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For higher energy input, the rotation strength L is either very high or very low, and the 
same value of y might give different results for independent runs. This could be explained 
through the existence of various metastable states. In the cases of high y where L is low, 
we did not find very many eddies and whirls. This might be due to the fact that many 
whirls are superposed, and they cannot be distinguished from each other. 

The actual value of ye depends on the system size as well as the other parameters 4 and 
U. We found yc to be approximately proportional to y /q .  Since the collision mechanism 
aligns the momenta, we do not expect yc to be linearly dependent on v. 

The angular momentum depends on the q and v in more or less the same way as it 
depends on the acceleration parameter. In all cases we find the three regions, see figure 3. 

Figure 3. Rotation strew& as a function of q and U from convection on a 128 x 128 lanice. (a )  
Absolute value of the angular moment” v e n u ~  the parameter q. q = 0.5, y = 0.3. v = 0.01. 
(b) Absolute vallre of the angular momenfum vemk the parameter U. I )  = 0.5, y = 0.3. 

To .investigate how the overall behaviour depends on the initial condition, we made 
simulations starting with convection rolls. To make an initial convection cell, we initiated 
the vectors pi perpendicular to Ri and with a magnitude proportional to the distance to the 
centre. For all y ,  the convection stayed stable for as long as we simulated, i.e. up to 10 000 
time-steps. 

One would further expect that if one makes the system more elongated, two convection 
cells could appear. A problem here is that the system is no longer symmetric. This means 
that the result might depend on the orientation of the system on the lattice, since some 
directions are preferred to others. Still, the effect is strong enough to be observed even in 
a~ system where the preferred lattice direction is along the longer side of the system, see 
figure 4. 

The angular momentum clearly depends on the distance from the centre of the convection 
cell. In figure 5, the average angular momentum is plotted against the distance from the 
centre of the convection cell. The angular momentum in the centre of the system is very 
low. From a distance of about 27 lattice spacings from the centre, the angular momentum 
grows linearly with a slope of 0.046. At a distance of about 50 lattice spacings from the 
centre, the effect of the walls can be seen, and the angular momentum falls fast. In the 
six.corners of the hexagonal lattice, there are ‘pockets’ of slower moving particles which 
accounts for the step-like shape of the right flank in figure 5. 
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y = 0.02, Y = 0.3 

Figure 5. The angular momenmm per cell ver.~us the distance from the eenve after 10000 
iterations. System size is 128 x 128 sites. q = 0.5, y = 1.0, v = 0.01 

5. Conclusions 

We have obtained convection in a simplified model of self-propelling particles. Instead 
of simulating discrete particles, the model beats densities of mass. Simple mechanisms 
of collision, acceleration and viscosity, together with reflecting boundaries, are enough to 
obtain convection. The asymptotic behaviour of the system depends on the initial state. 
For random initial states we found a phase transition in the acceleration, with the angular 
momentum as the order parameter. Taken together, this suggests a Reynolds number, 
R n  a YIV. 
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